

Borchert • Pinel • Rouil – Draft 1.0

ProtocolSessions in the
GMPLS Lightwave Agile

Switching Simulator
(GLASS)

Version: Draft 1.0

ABSTRACT:
The GMPLS Lightwave Agile Switching Simulator (GLASS) is an extension of the Scalable

Simulation Framework Network (SSFNet) and provides the framework for optical components

and the GMPLS structure. GLASS also provides a set of protocols that are ready to use and that

gives a new user an idea about how to use this new framework and how to implement protocols.

This document contains a collection of the protocols that can be found in the GLASS simulator.

Borchert • Pinel • Rouil – Draft 1.0 i

TABLE OF CONTENT

1 INTRODUCTION... 1

2 PROTOCOLSESSION IN SSFNET... 2

3 PROTOCOLSESSION IN GLASS... 3

3.1 THE PROTOCOL SIMPLE PROTOCOL ...3-1

3.1.1 Description... 3-1

3.1.2 Package and related classes.. 3-1

3.1.3 Version and Build... 3-1

3.1.4 DML schemas... 3-2

3.1.5 Implementation... 3-3

3.1.6 Example ... 3-3

3.2 PROTOCOL NEIGHBOR DISCOVERY ..3-1

3.2.1 Description... 3-1

3.2.2 Package and related classes.. 3-1

3.2.3 Version and Build... 3-1

3.2.4 DML schemas... 3-2

3.2.5 Implementation... 3-2

3.2.6 Example ... 3-3

3.3 BACKUPMANAGER ...4

3.3.1 Description.. 4

3.3.2 Package and related classes... 4

3.3.3 Version and Build.. 4

3.3.4 DML schemas.. 5

3.3.5 Implementation.. 5

3.3.6 Example .. 6

3.4 TOPOLOGYMANIPULATOR...7

3.4.1 Description.. 7

3.4.2 Package and related classes... 7

3.4.3 Version and Build.. 7

3.4.4 DML schemas.. 7

3.4.5 Implementation.. 7

3.4.6 Example .. 8

3.5 TRAFFICMANAGER ...9

Borchert • Pinel • Rouil – Draft 1.0 ii

3.5.1 Description.. 9

3.5.2 Package and related classes... 9

3.5.3 Version and Build.. 9

3.5.4 DML schemas.. 10

3.5.5 Implementation.. 10

3.5.6 Example .. 11

3.6 THE PROTOCOL DYNRECOVERY ..12

3.6.1 Description.. 12

3.6.2 Package and related classes... 12

3.6.3 Version and Build.. 12

3.6.4 Current implementation... 12
3.6.4.1 Analysis of the class DynRecoveryHeader...12

3.6.4.1.1 Analysis of the class DynRecovery ..13
3.6.4.1.1.1 The core methods..13
3.6.4.1.1.2 The message handling methods. ...14
3.6.4.1.1.3 The tools...14
3.6.4.1.1.4 The tools used to compute the next hop..15
3.6.4.1.1.5 Other tools used by the message handling methods...15

3.6.4.2 DynRecovery advanced features. ..15
3.6.4.2.1 Handling of several route backup processes..15
3.6.4.2.2 Bi-directional and unidirectional routes..16

3.6.4.3 Comments..16
3.6.4.3.1 Improvements to be done...16
3.6.4.3.2 Possible extensions..17

3.6.5 DML schemas.. 17

3.6.6 Example .. 18
3.6.6.1 Typical behavior on a 5 node ring topology...18

3.6.6.1.1 Charts: ..18
3.6.6.1.2 Timeline of the 5-node ring topology ...20

4 ACRONYMS... 23

5 REFERENCES.. 23

Borchert • Pinel • Rouil – Draft 1.0 ii i

TABLE OF TABLES

Table 1: The Configuration Schema of the SimpleProtocol...3-2

Table 2: The Example for the SimpleProtocol ..3-3

Table 3: The Configuration Schema for the OptNeighbour...3-2

Table 4: The Configuration Schema for the BackupManager...5

Table 5: The Configuration Schema for the TopologyManipulator ..7

Table 6: DML Configuration Schema..10

Table 7: The traffic manager as a global protocol definition ..11

Table 1: The Context of DynRecoveryHeader ...12

Table 2: Value of the message context...13

Table 3: The Message Types...14

Table 4: Configuration Schema of the class DynRecovery...17

TABLE OF FIGURES

Figure 1: ProtocolGraph..2

 Introduction

Borchert • Pinel • Rouil – Draft 1.0 1

1 INTRODUCTION

GLASS provides a set of protocols that have been implemented to test and validate the framework.

Protocols are called "ProtocolSession" in SSFNet. In the first part of this document you will find

characteristics of the SSFNet protocol implementation. In the second part, you will find a set of

protocols using the GLASS framework and how to configure them. To illustrate this description, it

contains samples of DML files.

 ProtocolSession in SSFNet

Borchert • Pinel • Rouil – Draft 1.0 2

2 PROTOCOLSESSION IN SSFNET

This chapter introduces the concepts of so called “ProtocolSession” in SSFNet. More detailed

information is published in the document “Protocol modeling with SSF.OS” [1].

To start, the figure below shows the graphical concept of the classes ProtocolGraph,

ProtocolSession, ProtocolMessage, and PacketEvent.

Figure 1: ProtocolGraph

The ProtocolGraph is the container for all the protocols available in a node. This container

configures and initializes the protocols when running a simulation. There is no specific configuration

of a graph. The user can configure it in the DML file.

The ProtocolSession is the instance of the service running in a node (for example IP). It is

configurable via DML file.

The ProtocolMessage is the entity that is exchanged between two protocols via the method

push(ProtocolMessage msg, ProtocolSession fromSession).

The PacketEvent is the entity used to exchange information between nodes. There is an easy

conversion done in the queues to map ProtocolMessage and PacketEvent.

In this document, there is no explanation on how to implement your protocol. To get this information,

look in the document [2].

ProtocolGraph

ProtocolSession 2

ProtocolSession 3

NIC NIC

ProtocolSession 1

packetEvent packetEvent

ProtocolMessage

ProtocolMessage

ProtocolGraph

ProtocolSession 2

ProtocolSession 3

NIC NIC

ProtocolSession 1

packetEvent packetEvent

ProtocolMessage

ProtocolMessage

 ProtocolSession in GLASS

Borchert • Pinel • Rouil – Draft 1.0 3

3 PROTOCOLSESSION IN GLASS

This chapter presents a collection of protocols that are implemented using the GLASS framework.

For each subsection, there is a description of the protocol, its package, its configuration and also

examples of the configuration.

 ProtocolSession in GLASS

Borchert • Rouil – Draft 1.0 3-1

3.1 THE PROTOCOL SIMPLE PROTOCOL

3.1.1 DESCRIPTION

The class SimpleProtocol is one of the first protocols implemented on the new framework. Its role

idea was to test and validate the behavior of the optical components. This protocol is sitting on top of

the OXCSwitch [3] and does not need IP. It requests a light path by using the utilities in the package

gov.nist.antd.optical.util to a destination node and sends data. This protocol does not need any

signaling to establish a lightpath.

3.1.2 PACKAGE AND RELATED CLASSES

The SimpleProtocol is located in the package gov.nist.antd.merlin.protocol.sample.

The class SimpleProtocolHeader contains the implementation of the header of this protocol. This

class is located in the same package.

3.1.3 VERSION AND BUILD

This document refers to the build 20430. The minimum versions are:

• SimpleProtocol: v1.4

• SimpleProtocolHeader: v1.2

 ProtocolSession in GLASS

Borchert • Rouil – Draft 1.0 3-2

3.1.4 DML SCHEMAS

This section shows the DML schema for the SimpleProtocol and explains how to configure it.

ProtocolSession [
 name simpleProtocol
 use gov.nist.antd.merlin.protocol.sample.SimpleProtocol
 destination %I
 routing %S
 wavelength %S
 bandwidth %S
 delay %F
]

Attributes name and use are the same as
any ProtocolSession.

Optional attribute destination specifies
the destination node of the messages
(default value: -1). The default value
will allow the node to receive messages
but not to send.
Optional attribute routing specifies the
name of the routing protocol (default
value: ShortestPathDistance).
Optional attribute wavelength specifies
the name of the wavelength algorithm
(default value: BestFit).
Optional attribute bandwidth specifies
the bandwidth request for the connection
(default value: 2.5 Gbps).
Optional attribute delay specifies the
delay between two transmissions (default
value 0.1s).

Table 1: The Configuration Schema of the SimpleProtocol

As for all protocols, the “SimpleProtocol” has to be specified in all the nodes that are going to send

and receive SimpleProtocol messages. Nodes that are in the path of the message do not need to have

this protocol installed because the path is O/O/O switched.

To use the default values, the DML file must contain at least an algorithm named

ShortestPathDistance and another one named BestFit.

 ProtocolSession in GLASS

Borchert • Rouil – Draft 1.0 3-3

3.1.5 IMPLEMENTATION

Once the instance of SimpleProtocol is configured to send messages, its behavior is as follow:

- Creation of the quality of service that matches the configuration.

- Request of a connection by using the instant lightpath establishment. This is provided by the

class gov.nist.antd.merlin.util.ConnectionUtil. In other words there are no signaling

messages to establish a path.

- If a path is found, register to it.

- Send messages with the delay that is given as input in the configuration.

Between two transmissions, the protocol unregisters the lightpath after (delay/2). Then it requests the

connection again. This is done to free unused resources. The light path can change during the

simulation because the protocol is only interested in sending data, not in using the same lightpath all

over again.

The content of the message sent is “Hello from <sourceID> to <destinationID>”.

3.1.6 EXAMPLE

The following DML is the configuration of a Node that is going to send messages to node 18 every

0.1sec. The algorithms used are ShortestPathSRLG to compute the route and BestFit to assign the

wavelength.

Table 2: The Example for the SimpleProtocol

ProtocolSession [
 name hello
 use gov.nist.antd.merlin.protocol.sample.SimpleProtocol
 routing shortestPathSRLG
 wavelength bestFit
 destination 18
 delay 0.1
]

 ProtocolSession in GLASS

Borchert • Rouil – Draft 1.0 3-1

3.2 PROTOCOL NEIGHBOR DISCOVERY

3.2.1 DESCRIPTION

This protocol is implemented in the class OptNeighbour* and represents a simple signaling protocol.

The goal for it is to create a table of neighbors for a node and how they can be reached. This protocol

is working on optical links only.

3.2.2 PACKAGE AND RELATED CLASSES

The package that contains the protocol is gov.nist.antd.merlin.protocol.discovery.

Three classes are located inside this package:

• OptNeighbour: This class contains the implementation of the signaling protocol

itself.

• NeighbourTable: It is the table used by the protocol above to store the information

about all the neighbors.

• NeighbourHeader: This class is the message header that contains the information that

has to be exchanged between the nodes.

3.2.3 VERSION AND BUILD

The current build of the package is 20430. The minimum versions are:

• OptNeighbour: v1.1

• NeighbourTable: v1.0

• NeighbourHeader: v1.2

* Some classes are spelled in British English in lieu of American English.

 ProtocolSession in GLASS

Borchert • Rouil – Draft 1.0 3-2

3.2.4 DML SCHEMAS

This following table presents the configuration schema of the protocol.

ProtocolSession [
 name discovery
 use gov.nist.antd.merlin.protocol.discovery.OptNeighbour
 _extend gov.nist.antd.merlin.util.AutoConfigCtrl
]

Standard configuration

Allows the configuration of
the add-drop-ports.

Table 3: The Configuration Schema for the OptNeighbour

3.2.5 IMPLEMENTATION

This chapter presents the implementation and the behavior of the protocol.

The class OptNeighbour extends the class AutoconfigCtrl. This class, as described in [3], allows

the user to configure the add-drop-ports and specify which lambda is going to be used to send or

receive information. If the user does not enter any manual configuration, the protocol will configure

the OXCSwitch automatically to be connected to all available input control lambdas as well as to all

available output control lambdas.

There are multiple steps in the protocol. The first one is to send signaling messages to all the

neighbors to notify their presence. This is done in a global broadcast. Then each node will update the

information in the message and make a global broadcast to reach the sender of the message. With this

procedure, all possible ways to reach the original sender of the message are tried. A node gets the

information about which port to use to send a data to a specific port to a specific neighbor. When a

node receives twice the same information it will not forward it to its neighbors.

The NeighbourHeader contains some specific fields to specify if this is a notification or a response

message.

 ProtocolSession in GLASS

Borchert • Rouil – Draft 1.0 3-3

3.2.6 EXAMPLE

Two examples are available in the directory “glass/examples/optical” .

• SimpleOpticalNeighbourDiscovery.dml: A four-node network and each of the nodes

contains the neighbor protocol. The configuration of the add-drop-port is done

manually.

• SimpleOpticalNeighbourDiscovery2.dml: Same example as the previous one, but

the configuration of the add-drop-ports is done automatically.

 ProtocolSession in GLASS

Borchert • Pinel • Rouil – Draft 1.0 4

3.3 BACKUPMANAGER

3.3.1 DESCRIPTION

The backup manager that is implemented in the class BackupManager, is a simple implementation

of a backup protocol. The mechanism is as follow:

When a failure/recovery occurs, the backup manager computes a new route with a predefined

algorithm. This is defined in the configuration. If another route is available, the messages will

be sent, by using this new route. If no other route is available, the connection is lost.

The backup manager is a protocol that must be installed in every node where a protection is required.

The manager can use algorithms that have knowledge of the whole topology. The backup manager is

for link protection only. The chosen backup route is a route that is computed around the failed link

and not necessarily on the entire path.

3.3.2 PACKAGE AND RELATED CLASSES

The backup protocol and the related classes or available in the package:

gov.nist.antd.merlin.protocol.protectionlink.

This package contains also an example algorithm (BackupLink) based on the algorithm

ShortestPathDistance and can be used to compute the backup route for the failed link. The last class

(LinkGraph) is the graph that represents the whole topology. The algorithm that computes the

backup routes uses this graph.

3.3.3 VERSION AND BUILD

This document refers to the build 20430 and later. The minimum versions are:

- BackupManager: v1.3

- BackupLink: v1.2

- LinkGraph: v1.1

 ProtocolSession in GLASS

Borchert • Pinel • Rouil – Draft 1.0 5

3.3.4 DML SCHEMAS

This section describes hoe to configure the protocol and its detailed implementation.

ProtocolSession [
name restoration
use gov.nist.antd.merlin.protocol.protectionlink.BackupManager
BACKUPALGORTITHM $S1!

]

Standard protocol configuration

Attribute BACKUPALGORITHM specifies
the name of the algorithm to use to
compute the backup of the link.

Table 4: The Configuration Schema for the BackupManager

The attribute “BACKUPALGORITHM” is a static class attribute. This means that the configuration

of this attribute in the DML file has to be done only once. If specified more than once, the last

configured value becomes the global value used. The backup algorithm must also be configured in

the Algorithm section of the DML file.

3.3.5 IMPLEMENTATION

The class BackupManager extends the class gov.nist.antd.merlin.util.AbstractCallback. This

super class implementation registers the backup manager to the optical network interface cards

(ONIC) and is notified when a failure/recovery event occurs. See the implementation of this class for

more details about the registration and notification messages.

When a failure occurs, the interface notifies the BackupManager about the type of failure on the

affected link, fiber, or lambda. The manager calls the backup algorithm to compute the new route

around the failed link. If a new one is available, the manager merges both routes to create a complete

new route. Then, it calls the wavelength assignment used on the primary path to compute a new path.

If a new path is available, then it registers the user of the working route to the backup route using the

same add-drop-ports. This ensures that the recovery mechanism is totally transparent to the upper

layer protocols.

If the backup route cannot be computed, then the protocol receives an error when trying to send

information. This means the connection has failed.

The implementation of this backup manager for link protection is just an example that does not cover

all possibil ities. Furthermore, using the mechanism of merging both routes, provided in class

gov.nist.antd.merlin.util.ConnectionUtil, may produce some exceptions.

 ProtocolSession in GLASS

Borchert • Pinel • Rouil – Draft 1.0 6

The algorithm BackupLink is a modified version of the algorithm ShortestPathDistance. It is used

to compute the backup route. The difference between both algorithms is that the BackupLink creates

backup routes for all li nks in the topology. Some backup routes may not be computed because of

bandwidth, failure, or unidirectionality of the links. To compute the backup, the algorithm

BackupLink is based on the graph created by the class LinkGraph.

Then during the simulation, the backup manager requests the route between the two nodes connected

by the link that failed). The algorithm BackupLink returns the backup route if one has been

computed before. Any implementation of algorithms that uses the standard interface for the

algorithms can be used to compute the backup route.

3.3.6 EXAMPLE

A complete example using the BackupManager is available in the file BackupManager.dml. This

file is located in the examples directory “glass/examples/optical” .

This example describes a simple three-node network that uses the algorithm ShortestPathDistance

for the calculation of the backup routes. The traff ic wil l be generated by the protocol

SimpleProtocol.

 ProtocolSession in GLASS

Borchert • Pinel • Rouil – Draft 1.0 7

3.4 TOPOLOGYMANIPULATOR

3.4.1 DESCRIPTION

The class TopologyManipulator is a pseudo-protocol because it does not send or receive any data. It

is located in one or more node and uses an event generator to create failures or other events according

to statistical information.

3.4.2 PACKAGE AND RELATED CLASSES

The package gov.nist.antd.merlin.generator.event contains the protocol, the interfaces to use for

the events and also an example of an event generator.

3.4.3 VERSION AND BUILD

This document refers to the build 20430 and later. The minimum versions are:

• TopologyManipulator: v1.2, the ProtocolSession

• EventGenerator: v1.1, the interface for the event generators

• EventParameter: v1.1, the event information created by an event generator

• RandomEventGenerator: v1.2, an implementation of event generator.

3.4.4 DML SCHEMAS

This paragraph explains the configuration of the protocol.

ProtocolSession [
name topologyManipulator
use
gov.nist.antd.merlin.generator.event.TopologyManipulato
r
generator [use $S1!]

]

DML fragment for the topology
manipulator.

Attributes name and use are the
same as any ProtocolSession.

Attribute generator defines
which module will be used to
generate events.

Table 5: The Configuration Schema for the TopologyManipulator

3.4.5 IMPLEMENTATION

The class specified in the generator section (see Table 5) must extend the interface EventGenerator

to be used by the topology manipulator. This interface provides two methods similar to the class

 ProtocolSession in GLASS

Borchert • Pinel • Rouil – Draft 1.0 8

ProtocolSession. The first one is called during the configuration (method public void config

(Configuration cfg)) and the second at the beginning of the simulation (method public void init()).

Basically, a generator creates an instance of the class EventParameter and passes it to the class

TopologyManipulator. This class checks the information and creates the correct simulation timer to

execute the event at the specific time.

The class TopologyManipulator can process multiple types of event (see coding), however at this

time the class RandomEventGenerator only creates node failure events.

The EventParameter allows a generator to specify the object to modify, the modification type, the

value to apply and the time.

The implementation of RandomEventGenerator creates a node failure or node recovery every

second. The value of the modification is random. If the random value is true then the node is failed. It

is possible to create two successive events with the same value.

3.4.6 EXAMPLE

There is no example in the GLASS directory but the following configuration may be added in any

protocol graph to add the TopologyManipulator and the RandomEventGenerator:

ProtocolSession [
name topologyManipulator
use gov.nist.antd.merlin.generator.event.TopologyManipulator
generator [use gov.nist.antd.merlin.generator.event.RandomEventGenerator]

]

 ProtocolSession in GLASS

Borchert • Pinel • Rouil – Draft 1.0 9

3.5 TRAFFICMANAGER

3.5.1 DESCRIPTION

The class TrafficManager is a protocol session that requests connections and sends messages. The

algorithm that determines the rules on how often connections have to be created and to whom

depends on the attached generator.

3.5.2 PACKAGE AND RELATED CLASSES

The classes are located in the package gov.nist.antd.merlin.generator.traffic.

The following list shows all classes that are contained in this package:

• TrafficManager: The protocol session that requests the connection and sends the

message.

• TrafficParameter: This class contains the information that is needed by the

TrafficManager to create the connection (quality of service, destination, message).

• TrafficGenerator: This interface class has to be implemented by the traffic generator.

• RandomTrafficGenerator: A simple implementation of a traff ic generator.

3.5.3 VERSION AND BUILD

This document refers to the build 20430. The minimum versions are:

• TrafficManager: v1.3

• TrafficParameter: v1.1

• TrafficGenerator: v1.1

• RandomTrafficGenerator: v1.2

 ProtocolSession in GLASS

Borchert • Pinel • Rouil – Draft 1.0 10

3.5.4 DML SCHEMAS

This paragraph explains the configuration of the protocols

ProtocolSession [

name trafficManager
use gov.nist.antd.merlin.generator.traffic.TrafficManager
generator [use $S]

]

Basic DML structure for the
traffic manager
The traffic manager will send
information according to the
given generator. If not
précised, then it will only
receive messages.

Table 6: DML Configuration Schema

The traffic generator may contain its own DML configuration. For example, the class

RandomTrafficGenerator is activated by specifying “active true” in the DML configuration of the

generator (3.5.6).

3.5.5 IMPLEMENTATION

The class specified in the generator section must implement the interface TrafficGenerator to be

able to be used by the traffic manager. This interface provides two major methods similar to the

ProtocolSession. The first method is called during the configuration. It is the method public void

config (Configuration cfg). The second method public void init() is called at the beginning of the

simulation. According to statistical information, the traffic generator creates an instance of

TrafficParameter and passes it to the TrafficManager.

The traff ic manager then will create the connection request from the node where the instance is

running to the destination specified in the TrafficParameter. Once a path is computed, the traff ic

manager wil l start sending the messages. To be able to receive a message, it is necessary that there is

an implementation of the traffic manager installed in the protocol graph of the destination. In the case

of the RandomTrafficGenerator implementation, the destination of the messages is chosen randomly.

This means that an instance of TrafficManager must be installed in each Optical Cross-Connect

(OXC). The current implementation creates a Traff icParameter every 10̂ 9-simulation-tics, which

may not be appropriate for all simulations. It is up to the user to modify and/or optimize the

generator.

It is important to note that the traff ic manager does not free the resources used by the connection.

It is up to the generator to know when a connection must be removed. !

 ProtocolSession in GLASS

Borchert • Pinel • Rouil – Draft 1.0 11

3.5.6 EXAMPLE

Currently there is no example using the traff ic manager. An easy way to include it in a simulation is

to add the following DML fragment at the end of the DML file:

Table 7: The traffic manager as a global protocol definition

This coding wil l automatically add the traffic manager in all the nodes of a network and af the active

attribute is true, all instances wil l request a connection.

global [
 ProtocolSession [
 name trafficManager
 use gov.nist.antd.merlin.generator.traffic.TrafficManager

generator [use
gov.nist.antd.merlin.generator.traffic.RandomTrafficGenerator

 active true]
]
]

 ProtocolSession in GLASS

Borchert • Pinel • Rouil – Draft 1.0 12

3.6 THE PROTOCOL DYNRECOVERY

3.6.1 DESCRIPTION

This document describes the current implementation of the protocol DynRecovery (Dynamic

Recovery) in GLASS. DynRecovery is a dynamic Route Recovery Protocol for optical networks

consisting of OXCEdgeRouters and of OXCs.

3.6.2 PACKAGE AND RELATED CLASSES

The protocol DynRecovery and related classes are located in the package

gov.nist.antd.merlin.protocol.signaling. The header for the protocol is implemented in the class

DynRecoveryHeader.

3.6.3 VERSION AND BUILD

The last recent version is 1.6 and the last release is version 1.4 in build 20430 and higher. This

section presents the protocol in detail.

3.6.4 CURRENT IMPLEMENTATION

3.6.4.1 ANALYSIS OF THE CLASS DYNRECOVERYHEADER

The following table lists the content of the header fields.

byte type Type of the message

int routeID Route on which the failure occurred

int channelID Channel on which the failure occurred

int segmentIndex Segment on which the failure occurred

int currentSegInd Segment on which this DynRecovery was

received.

int oxcDoneID Value -1 if not used; valid only in OXC_DONE

messages.

Table 8: The Context of DynRecoveryHeader

 ProtocolSession in GLASS

Borchert • Pinel • Rouil – Draft 1.0 13

The corresponding size is 21 bytes. This can be requested by the method bytecount(). Assuming that
an “ int” uses 32 bits.

The type can be found in the following table:

LOL_ADV 1

SET_PATH 2

OXC_DONE 3

SET_PATH_DONE 4

SET_PATH_ACK 5

Table 9: Value of the message context

The methods are the constructor, the set and get methods to access each field, a toString() method

enabling a clean printing of the header fields. The printType() method enables a user to get a string

representation of the type instead of its byte value.

3.6.4.1.1 ANALYSIS OF THE CLASS DYNRECOVERY

DynRecovery is the class implementing the whole behavior of the protocol.

3.6.4.1.1.1 THE CORE METHODS

The method init() is used to register the protocol DynRecovery at the ONIC for notification, in case a

failure occurs.

The method callback() is called by the ONIC when a link, fiber, or lambda failure is detected. With

this information, the protocol DynRecovery is able to determine the route, the channel, and the

segment of the failure. Then it builds a DynRecoveryHeader to handle the Loss Of Light with a call

to the HandleLOL_ADV method (see Table 10), using the DynRecoveryHeader to pass it the useful

information.

All messages are processed by DynRecovery message handling functions and are send back to the

ONIC by the method transmit(). This method is used to determine the next hop where the

DynRecoveryHeader has to be sending to. Then it is pushed it down to the ONIC (via the protocol

stack) to finally transmit the message.

 ProtocolSession in GLASS

Borchert • Pinel • Rouil – Draft 1.0 14

When receiving a message in a node, a DynRecoveryHeader message is received by the protocol by

using the method push(message).

The push method drops the optical frame header, and filters the messages depending on their type,

then delivers them to the right message handling method.

3.6.4.1.1.2 THE MESSAGE HANDLING METHODS.

There are five different types of messages and their message handling methods as shown in Table 10.

Message type Handling method

LOL_ADV handleLOL_ADV

SET_PATH handleSET_PATH

OXC_DONE handleOXC_DONE

SET_PATH_DONE handleSET_PATH_DONE

SET_PATH_ACK handleSET_PATH_ACK

Table 10: The Message Types

All of them are divided in two parts, one for a usual node, and one part for either the source or the

destination node, depending on the messages propagation-direction. Their behavior is consistent with

the functional description and is well commented in the coding.

3.6.4.1.1.3 THE TOOLS

The class HandledRoutesHTable is used at the node where the failure is detected to avoid that

several calls to the call back method trigger several recovery mechanisms when only one is required.

The class OXCHashTable is used at the source node of the route in order to identify, which OXCs

have already answered the SET_PATH message with the answer message SET_OXC_DONE.

The method printDynRecoveryMessage is used to create a preformatted printout of the DynRecovery

messages.

The method printRoute (OpticalRoute) is used to print out all the nodes of the first path that the given

route is using.

 ProtocolSession in GLASS

Borchert • Pinel • Rouil – Draft 1.0 15

3.6.4.1.1.4 THE TOOLS USED TO COMPUTE THE NEXT HOP

The method transmit only accepts a DynRecoveryHeader as argument; it needs this header to

compute the forwarding information.

The only information it needs is the id of the next add-lambda. This information is provided by the

method getNextAddLambdaID.

 The method getNextAddLambdaID browses through the list of all the add-lambdas of each ONIC in

the node until the node at the opposite side of the lambda connected to this add-lambda matches the

next hop for the dynamic recovery “DynRecovery” (the match is done with the node IDs)

The node at the opposite side of the lambda connected to this add-lambda is found by using the

method getADLDestNodeID.

The next node for DynRecovery is found with the method getNextHostID.

The method getNextHostID uses the method getTransmissionFiber because with a given

DynRecoveryHeader it is more convenient to find the next transmission fiber.

3.6.4.1.1.5 OTHER TOOLS USED BY THE MESSAGE HANDLING METHODS

The methods plugAtDestination and plugAtSource are used to register the backup route at the source

and at the destination node. The precondition is that the number of lambdas and their bandwidth is

the same as it is in the original route.

The method isDownStreamOfFailure is more specifically used by the method callback to determine,

if the current node is located upstream or downstream of the failure. If the node is located upstream,

no action is undertaken, whereas if the node is located downstream the normal action is processed.

The method getTargetNode is used to get the direction of the traff ic flow.

3.6.4.2 DYNRECOVERY ADVANCED FEATURES.

3.6.4.2.1 HANDLING OF SEVERAL ROUTE BACKUP PROCESSES

It is possible that at the same time in each node are multiple backup processes are active, even if only

one instance of the DynRecovery protocol is installed.

The current implementation of DynRecovery handles this problem by maintaining a HashTable that

contains the already handled routes. This Hashtable is only used in the source node to know for

 ProtocolSession in GLASS

Borchert • Pinel • Rouil – Draft 1.0 16

which failed route all the OXCs are answering to. Another similar HashTable is used in the node

where the failure is detected. Indeed there is only one failure recovery process per route. Thus, if this

node gets another failure notification from an upstream link of the same route it doesn’t start any new

action.

The failure will be detected by the ONIC and delivered to the instance of DynRecovery by passing the

failed or recovered lambda or fiber.

If the optical fiber contains several wavelengths, used by the same route, DynRecovery is going to

receive as many callbacks for this route as there are used wavelengths. As explained above the

protocol only starts one recovery process and recovers the whole route, not only the failed lambda

channel.

At any moment, a node can handle a number of routes theoretically infinite. Indeed the forwarding

mechanism is packet based (every packet contains all the necessary information to reach its

destination). A basic piece of information that every DynRecovery packet is carrying is the route

number along which it is traveling.

3.6.4.2.2 BI-DIRECTIONAL AND UNIDIRECTIONAL ROUTES

DynRecovery is able to handle either bidirectional or unidirectional routes. The signaling channel

used is shared neither with the route nor with the backup route. The signaling channel requires being

bidirectional whereas the route can be unidirectional.

3.6.4.3 COMMENTS

3.6.4.3.1 FUTURE IMPROVEMENTS

The current implementation of the dynamic recovery protocol might require a few improvements in

the future: if it is not kept at the lowest level above the optical layer nothing prove that the signaling

channels wil l behave as a fair queuing systems. This can be a problem if an OXC_DONE message

arrives before the SET_PATH message at the source node.

The methods plugAtSource and plugAtDestination should be improved to work with any kind of

lambda used.

After the backup route is installed, the switches of the original working path are not resetted. As a

result after a recovery of a failure the resources are not freed.

 ProtocolSession in GLASS

Borchert • Pinel • Rouil – Draft 1.0 17

3.6.4.3.2 POSSIBLE EXTENSIONS

The current implementation of DynRecovery can be easily extended in many ways to build route

recovery protocols.

For instance, for tests reasons, DynRecovery has been brought above UDP/IP (it is a little fake

because the UDP and IP protocols are not used, just the headers are used to dump packets in the

ONICS). Still the class DynRecoveryUDPIP is an example of how DynRecovery can be overwritten

and extended.

3.6.5 DML SCHEMAS

Table 11 contains the DML schema for the protocol followed by some comments about the

parameters.

ProtocolSession [
name DynRecovery
use

gov.nist.antd.merlin.protocol.signaling.DynRecovery
BCKUPALGO ShortestPathDistanceSRLG
debug $S
message $S

]

Optional attribute BCKUPALGO
specifies the name of the algorithm
to use for backup.
Optional attribute debug is used to
print additional information.
Optional attribute message
specifies if the content of the
control messages must be printed.

Table 11: Configuration Schema of the class DynRecovery

The attributes debug, message and BCKUPALGO are all optional. Their default values are

respectively: false, false and ShortestPathDistanceSRLG.

If the attribute debug is set to true, it means that all the debug information are going to be visible. The

attribute “message == true” means this instance of DynRecovery is going to print the content of all

the messages it handles. The attribute BCKUPALGO has to be declared in only one of all the nodes

using the protocol DynRecovery. This attribute is network wide global and specifies which algorithm

has to be used to generate backup routes. Here the default value is ShortestPathDistanceSRLG

 ProtocolSession in GLASS

Borchert • Pinel • Rouil – Draft 1.0 18

3.6.6 EXAMPLE

3.6.6.1 TYPICAL BEHAVIOR ON A 5 NODE RING TOPOLOGY

3.6.6.1.1 CHARTS:

Node 1 Node 3

Node 4Node 5

Node 2

Route 1 (Between nodes 1 and 3), established before the beginning of the simulation.

DynRecovery DynRecovery DynRecovery

DynRecovery DynRecovery

t3+ : backup route computed,
send a SET PATH
message along it

SET PATH

t4 : Forward the SET PATH message,
Configure the OXC,

Send an OXC DONE (Node 4) message

SET
PATH

OXC (4)
DONE

Route 2 (Between nodes 1 and 3), computed during the simulation at destination node.

 ProtocolSession in GLASS

Borchert • Pinel • Rouil – Draft 1.0 19

Node 1 Node 3

Node 4Node 5

Node 2

DynRecovery DynRecovery DynRecovery

DynRecovery DynRecovery

t5 : Forward the SET PATH message,
Configure the OXC,

Send an OXC DONE (Node 5) message

SET PATH

OXC (5)
DONE

t6 : Forward the OXC DONE
(Node 4) message

OXC (4)
DONE

Node 1 Node 3

Node 4Node 5

Node 2

DynRecovery DynRecovery DynRecovery

DynRecovery DynRecoverySET PATH
DONE

t9 : All the OXC DONE
messages have been received,

Send a SET PATH DONE Message
toward Destination

t12 : SET PATH DONE received,
Connect the new route,

Send a SET PATH ACK Message
toward Source

SET PATH
ACK

 ProtocolSession in GLASS

Borchert • Pinel • Rouil – Draft 1.0 20

Node 1 Node 3

Node 4Node 5

Node 2

DynRecovery DynRecovery DynRecovery

DynRecovery DynRecovery

t15 : SET PATH ACK received,
Connect the new route.

Back Up Route Ready for use

3.6.6.1.2 TIMELINE OF THE 5-NODE RING TOPOLOGY

• t1: A failure occurs on the link between node 1 and 2,

• t2: On both sides of this link, the connected ONICs signal the failure to the instance of

DynRecovery of their node. The DynRecovery detects if its node is upstream or

downstream of the failure.

If it is downstream of the failure it sends a failure notification (LOL_ADV: Loss Of

Light Advertisement) to the destination node of the route on which the failure has

occurred, otherwise no action is undertaken.

• t3: The LOL_ADV message reaches the destination node. DynRecovery computes a

backup route.

The user can specify the backup algorithm used (see Table 11). The default algorithm is

the ShortestPathDistanceSRLG. The Shared Risk Link Groups (SRLG) of the links are

used to prevent the backup route from using the same links as the original route. If the

 ProtocolSession in GLASS

Borchert • Pinel • Rouil – Draft 1.0 21

SRLGs of the links are missing in the configuration file (DML file), it occurs that the

same link can be used if still available and usable resources are available. Depending on

the algorithm used for the restoration, the results wil l be different.

Once the backup route is computed, DynRecovery sends a SET_PATH message along

this route.

• t4: The SET_PATH message is received at node 4. It is directly forwarded toward the

source node and then the OXC 4 configures itself (it effectively connects the lambdas).

Once this configuration is done, DynRecovery sends an OXC_DONE message towards

the source node.

• t5: The SET_PATH message is received and forwarded at node 5. The OXC 5 is

configured, and an OXC_DONE message is sent towards the source node.

• t6: The OXC_DONE message from the node 4 is received in the node 5 and directly

forwarded to the source node.

• t7: The source node receives the SET_PATH message and then gets ready to receive the

OXC_DONE messages for each OXC of the backup route.

• t8: The source node receives the OXC_DONE message sent by the OXC 5.

• t9: The source node receives the OXC_DONE message sent by the OXC 4. When all the

OXCs of the backup route have answered, the same node sends back a set

SET_PATH_DONE message towards the destination node.

• t10: The node 5 receives the SET_PATH_DONE message and directly transmits it towards

the destination node.

• t11: The node 4 receives the SET_PATH_DONE message and directly transmits it towards

the destination node.

• t12: The destination node receives the SET_PATH_DONE message. It connects the backup

route to the protocol previously using the original route. Then it sends backs a

SET_PATH_ACK message towards the source node.

• t13: Node 4 receives the SET_PATH_ACK message and forwards it towards the source

node.

• t14: Node 5 receives the SET_PATH_ACK message and forwards it towards the source

node.

Borchert • Pinel • Rouil – Draft 1.0 22

• t15: The source node receives the SET_PATH_ACK message. It connects the backup route

to the protocol previously using the original route.

 Acronyms

Borchert • Pinel • Rouil – Draft 1.0 23

4 ACRONYMS

GLASS GMPLS Lightwave Agile Switching Simulator

SSF Scalable Simulation Framework

SSFNet Scalable Simulation Framework Network

GMPLS Generalized Multi-Protocol Label Switching

IP Internet Protocol

DML Data Modeling Language

OXC Optical Cross Connect

ONIC Optical Network interface Card

5 REFERENCES

[1] Protocol modeling with SSF.OS

By Renesys Corporation

URL: http://www.ssfnet.com/InternetDocs/ssfnetTutorialProtocols.html

[2] How to implement a ProtocolSession in SSFNet

Borchert-Rouil, NIST/ANTD.

URL: http://www.antd.nist.gov/glass/

[3] OXCSwitch configuration in GLASS Simulator

Borchert-Rouil, NIST/ANTD.

URL: http://www.antd.nist.gov/glass/

